
Probing the fractional topological charge of a vortex light
beam by using dynamic angular double slits

Jing Zhu,1 Pei Zhang,1,2,* Dongzhi Fu,1 Dongxu Chen,1 Ruifeng Liu,1 Yingnan Zhou,1

Hong Gao,1 and Fuli Li1

1Laboratory of Quantum Information and Quantum Optoelectronic Devices, Shaanxi Province,
Xian Jiaotong University, Xian 710049, China

2Key Laboratory of Quantum Information, University of Science and Technology of China,
Chinese Academy of Science, Hefei 230026,China
*Corresponding author: zhangpei@mail.ustc.edu.cn

Received June 28, 2016; revised August 6, 2016; accepted August 6, 2016;
posted August 9, 2016 (Doc. ID 269178); published September 8, 2016

Vortex beams with fractional topological charge (FTC) have many special characteristics and novel applications.
However, one of the obstacles for their application is the difficulty of precisely determining the FTC of fractional
vortex beams. We find that when a vortex beamwith an FTC illuminates a dynamic angular double slit (ADS), the
far-field interference patterns that include the information of the FTC of the beam at the angular bisector direction
of the ADS vary periodically. Based on this property, a simple dynamic ADS device and data fitting method can be
used to precisely measure the FTC of a vortex light beam with an error of less than 5%. © 2016 Chinese Laser
Press

OCIS codes: (050.4865) Optical vortices; (120.3180) Interferometry; (140.3295) Laser beam characterization.
http://dx.doi.org/10.1364/PRJ.4.000187

Since Allen et al. recognized in 1992 that vortex optical fields
with a phase distribution of the form exp�imϕ� [ϕ is the azimu-
thal angle and m is the azimuthal index referring to the topo-
logical charge (TC) of the optical vortex] may carry orbital
angular momentum (OAM) [1], vortex light beams have been
extensively studied both theoretically and experimentally.
Traditionally, m is an integer, such as Laguerre–Gaussian laser
modes. Then the optical field is called an integral vortex optical
field, which is an eigenstate of the OAM operator with eigen-
value of mℏ, and has an annular intensity distribution with a
dark central node produced by the central phase singularity
[1,2]. Integral vortex light beams have offered a good source
both in classical and quantum optics with many different
applications [3], such as optical tweezers and micromanipula-
tion [4–8], optical communications [9–11], quantum informa-
tion science [12–15], spiral phase contrast imaging [16], and
holographic ghost imaging [17].

On the other hand, the situation becomes more complex
and interesting when the TC is an arbitrary fractional number.
Since Berry introduced the characteristics and the evolving of
fractional vortex beams mathematically in 2004 [18], frac-
tional vortex beams have attracted increasing attention. A
fractional vortex beam has a phase distribution of the form
exp�i�Mϕ� β�� somewhere during its propagation, where M
is an arbitrary fractional number and β is the angular position
of the helical wavefront cut (angular phase discontinuity).
Due to the radial phase discontinuity in fractional vortex
optical fields, the axis symmetry of intensity found in inte-
ger-order optical vortices is broken and a low-intensity radial
strip has been observed [18,19]. Meanwhile, the state, instead
of the eigenstate of OAM in integer vortex optical fields, is a
superposition state of the basis of integer OAM states that

depend on both the TC M and angular position β [20–22].
The characteristics of the fractional vortex optical fields en-
dow them with unique advantages compared to the integer
vortex optical fields. For example, as a fractional vortex beam
has a radial opening, this could be used to guide and transport
particles [23] and improve the ability of optical sorting [24].
The asymmetric intensity distribution also could be utilized
to achieve anisotropic edge enhancement [25,26]. In quantum
information processing, it could be used to investigate high-
dimensional entanglement states by utilizing non-integer
OAMs [20,27,28]. One of the key issues for the above applica-
tions is the effective determination of the fractional TC (FTC).
Many methods that have been used for integral TC determi-
nation by calculating the number of interference patterns,
such as dual-triangular aperture diffraction [29], triangular
aperture diffraction [30], mode conversion [31], and interfer-
ence with its mirror image [32], could be used to observe only
the half-integer value of a fractional vortex beam but not for
probing the exact value of an FTC. Nevertheless, there are still
several methods to measure the FTC. Liu put forward a poten-
tial way based on a weak random scattering screen by count-
ing the size of the area of divided bright spots for the fractional
parts of the TC and the number of the complete spots for the
integral parts [33]. Zhang probed the FTC using a vortex
grating spectrum analyzer within a 10% error [34]. During
their experiments the intensity value of the center portion
of the target diffraction order was extracted to calculate
the FTCs, and the target diffraction order was N or N � 1,
where N ≤ −M ≤ N � 1. This means the range of the FTC
must be known beforehand. Huang et al. designed a method
of cascaded Mach–Zehnder interferometers (MZIs) to mea-
sure the FTC of a light beam [35]. This method needs more
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than three cascaded MZIs when the modulus of the FTC is
larger than 2. The larger the modulus of the FTC, the more
cascading stages are needed. That is to say, the stability
and the precision will decrease for larger FTC. Li et al. pro-
posed a method to identify nondestructively the vortex light
by using modified MZIs [36]. The key point of this method is
the relationship between the intensity difference of two out-
puts and the relative phase difference of the two Dove prisms
in the setup; the modified MZIs method also needs precise
control of the relative phase change when the modulus of
the FTC become larger. The larger the modulus of the FTC,
the more difficult is the experiment. Meanwhile, important
disadvantages for MZIs are that they are phase sensitive
and unstable. Emile et al. determined the FTC by a Fresnel
bi-prism with error of less than 6% [37]. This method calls
for precisely aligning the angular phase discontinuity with
the top of the prism and precisely identifying the center
of the interference fringes. Most of the methods described
here need a complicated experimental setup or have lower
precision.

Based on previous work reported in Refs. [38–40], a simple
setup with a dynamic angular double slit (ADS) can be
employed to precisely measure the FTC of vortex beams.

According to our previous work [40], when a vortex beam
with a spiral phase front exp�ilϕ� passes through a dynamic
ADS along the z0 axis, as shown in Fig. 1, the interference
pattern intensity at P varies as a cosine function of lφ,
I ∝ 1� cos�lφ� θ�, where φ is the angle between the
dynamic ADS, and θ is an additional phase set on one slit.
This method also works well for a fractional vortex beam with
the spiral phase front exp�i�Mϕ� β��. The result is

I ∝ 1� cos�M�φ� θ∕M��: (1)

As shown in Fig. 1, the angular bisector direction of the dy-
namic ADS is parallel to the y axis and the y0 axis. We can then
fix the angular bisector at the y axis and continuously rotate
the two single slits with the same angular velocity with respect
to the y axis. Thus, a periodic bright or dark intensity can be
obtained at the y0 axis when a vortex beam illuminates the
ADS. After the intensity is collected at P, the I − φ curve
can be gotten. When one of the slits moves to the position
of a helical wavefront cut, there will be a sharp change in
the I − φ curve, which could help us to determine β.

After the experimental data about I with φ has been
obtained, it is reasonable to get the FTC by fitting those
data. Because any function that has the expression of

a sin�x� � b cos�x� can be simplified to
����������������
a2 � b2

p
cos�x − γ�,

where sin�γ� � a∕
����������������
a2 � b2

p
, we choose the fitting function as

I0 � a0 � a1 sin�Mtφ� � b1 cos�Mtφ��: (2)

To minimize the fitting error, none of the parameters in
Eq. (2) can be fixed. If θ � 0, we can get only the modulus
of the FTC. To determine the sign of the FTC, the additional
phase θmust be introduced [40]. First, we collect the intensity
when the additional phase θ is zero. Second, we record the
intensity again when θ is set to be π∕2. Finally, we can get
the sign of the FTC from the direction of displacement
of the intensity period (or a rotation in polar coordinates of
the I − φ curves) between the two curves. It can be known
from Eq. (1) that, if θ is positive, the second curve will rotate
clockwise when the sign of M is positive and anticlockwise
while the sign of M is negative. Based on these methods,
we propose a simple, quick, and accurate method for meas-
uring the modulus and sign of the FTC simultaneously.

The experimental setup of the ADS interference is shown in
Fig. 2. Light from an He–Ne laser passes through a half-wave
plate (HWP) and a polarizing beam splitter (PBS), which are
used to adjust intensity and filter the polarization. Then it is
expanded by two lenses, L1 and L2. The expanded beam is
vertically illuminated on a spatial light modulator (SLM),
which is used to generate vortex beams and ADSs. The far-
field diffraction is generated by lens L3 and the first-order
diffraction is selected by an aperture. Finally, the intensity pat-
tern is recorded by a charge-coupled device (CCD) camera.
For simplicity, we fix both the angular bisector of the ADS
and the position of helical phase cut on the y axis, which
means the direction angle of the angular bisector and β are
both zero, so the center of interference patterns will not move
when the angle of the ADS is changed. By integrating the in-
tensity in the center, we can obtain the experimental data
about the I − φ relationship. In the experimental process,
the width of an angular single slit is 8°, the step of two-slit
rotation is 1°, and the resolution of the SLM is 20 μm per pixel.

Figure 3 shows the experimental result for determining the
modulus of the FTC of different vortex beams with additional
phase θ � 0. The black dots are the experimental data, while
the green curves are their fitting results.M is the FTC we gen-
erated and Mf is the probing result from our method. The er-
rors between M and Mf are all less than 5% in our experiment
(M � �1.5, �4.3, �7.8, �15.2 are chosen). Thus, our method

Fig. 1. Schematic of ADS interference. α is the width of an angular
single slit, and φ is the angle between dynamic two single slits. q1, q2,
and q3 are three points on the mask and oq3 is the angular bisector of
∠q1oq2. P is a point on the far field (with q1P � q2P), which is chosen
to observe interferential intensity. θ represents an additional phase
on one single slit.

Fig. 2. Sketch of the experimental setup. The inset shows the mask
pattern loaded on the SLM.
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is both precise and suitable for wide ranges. According to
Eq. (1), the minimum value of the data is zero. The experimen-
tal data in Fig. 3 are not consistent with the theory. This is
because of the existence of background light. However, this
will not change the period of the curve. That is, the modulus of
M will not be affected.

In Fig. 4, the purple curve, which has the additional phase
π∕2, rotates 21° clockwise compared with the blue one, in
which the additional phase is zero. From Eq. (1), we know
that when the additional phase difference between two mea-
surements is Δθ � θ2 − θ1, the rotation angle will be Δθ∕M .
The experimental result is consistent with the theoretical
value, which is 20.93°.

The errors come mainly from the width of angular single
slit α, the rotating step of the two slits Δφ, and nonideal

instruments used in the experiment. The width of an angular
single slit cannot be too wide, because more helical phase will
be selected by the slits, which will affect the interference pat-
tern. It also cannot be too small, because less intensity will be
collected by the detector. The rotating step of the two slits
Δφ should be small enough to get more experimental data,
especially for a high-order FTC beam.

In conclusion, we have shown that dynamic ADS can be
used to measure the FTC of a vortex light beam easily and
precisely. When an FTC vortex beam illuminates the ADS,
the far-field interference patterns at the angular bisector
direction of the ADS vary periodically, which include the
information of the FTC. Based on this, the modulus of the
FTC can be easily probed by fitting the experimental data with
the error of less than 5%. The sign of the FTC can be judged by
adding an additional phase θ on one of the slits. This method
clearly reveals the spiral phase structure of FTC vortex
beams, and provides a way to precisely measure FTCs with
a very simple and low-cost structure.
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